Ceramic injection moulding
Post-sintering & finishing operations
Opportunities for MIM magnets
Ceramic injection moulding: a review of developments in production technology, materials and applications

Ceramic injection moulding (CIM) is a well-established process for the mass production of complex shaped ceramic components. In the following review Dr. Tassilo Moritz and Dr. Reinhard Lenk from the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, show how process and material developments have opened up a new world of possibilities for CIM, from micro parts to automotive, electronics and engineering solutions.

In July 1938 a method for making a refractory body was patented by the US patent office. Karl Schwartzwalder claimed in his patent a “method of making ceramic articles which consists in preparing a mixture of finely ground non-plastic ceramic material, and a resinous binder, forming a body from there by application of pressure, reforming said body by application of pressure and heat in sufficient degree to make the binder to flow thereby distributing the forming pressure throughout the body, permitting the body to harden and firing the hardened body to expel the binder and cause the non-plastic material to sinter together” [1].

Independently from this, in November 1940, Klinger et al. obtained a German patent claiming a method of producing spark plugs by injecting a ceramic compound with the addition of organic binders into a mould by application of pressure [2]. Thus, 70 years ago, ceramic injection moulding (CIM) was born – a shaping method which still today is the most efficient processing route for the high volume production of ceramic components with complex geometry.

During the first thirty years, however, ceramic injection moulding was of minor interest to the wider ceramics industry [3]. The progression into financial viability was based on research and development efforts undertaken during the 1970’s and 1980’s [4]. Only in the 1970’s did growing concern over energy, environment and natural resources increase interest in heat engines and national and international attention was focused on the potential application of ceramics. Injection moulding provided a cost-effective fabrication method suitable for the mass production of the parts of a heat engine whose complex shape caused fabrication problems [5].

In 1984 Carborundum reported considerable progress towards manufacturing developments, focusing much of its energy and resources on the injection moulding of turbocharger rotors. Injection moulding had enabled the company to produce such components as axial turbine blades and pre-combustion chambers. On a large scale, production included 8-inch-diameter turbine wheels for General Motors turbine engine and large static components for the automotive gas engine industry.

Research and development efforts during the 1970’s and 1980’s [4] have laid the foundation for the current state of the art in ceramic injection moulding. The process has been developed further and is now used for a wide range of applications. The following review will provide an overview of the current state of the art in ceramic injection moulding, with a focus on recent developments and future trends.

Fig. 1 Application areas of different ceramic shaping technologies in dependence on the lot size and the complexity of components geometry [16]
turbine programmes.

Today around 330 companies from all over the world practice variants of powder injection moulding (PIM). Over 70% of these companies practice metal injection moulding (MIM), with a further 5% of companies producing a mixture of metals, ceramic and carbide components [7]. The remaining 25% practice CIM. Between 2006 and 2007 global annual sales growth in PIM was near 13% [7]. In comparison to MIM, ceramic injection moulding tends to produce larger and more highly priced components.

The market for advanced ceramic products is continuously growing thanks to the unique property profile offered by ceramic materials. Ceramics are the material of choice for components that operate under extreme conditions, e.g. high temperatures, corrosive atmospheres, abrasive conditions or high loads at high temperatures. Moreover, ceramics combine excellent mechanical properties with low specific weight. This combination makes them interesting as lightweight construction materials for moving components in automotive, aeronautic or space applications and for engine components.

Beside so-called structural ceramics, another very important segment is electronic ceramics, including dielectrics, insulators, substrates, piezoelectric ceramics, superconductors and magnets. The latter forms the largest share of advanced ceramics [8].

Classification and process variants

Fig. 1 shows the most efficient application areas of different ceramic shaping technologies, dependent on the number of pieces which must be produced and the desired complexity of the component geometry. Unlike other powder shaping techniques, ceramic
Injection moulding offers a relatively quick and cost effective route towards the mass production of geometrically complex, net-shape components with tight tolerances [9-14].

Injection moulding additionally offers the advantage of accomplishing ceramic parts with internal or external gears, undercuts, hollows, cross holes and serrations without any subsequent time and cost consuming mechanical operations [15].

In contrast to the raw materials used for traditional ceramics, which contain clay minerals and therefore showing a pseudoplastic behaviour, the powders for advanced ceramic products are synthetic high purity materials with no “plastic shaping” ability. For this reason, the powders must be combined with organic additives to give them the desired plasticity. According to the type of organic additive, the resulting powder-binder-mixtures, the feedstocks, are suited to one of two plastic shaping methods. These methods are “low pressure” (LCIM) and “high pressure” injection moulding, according to the viscosity of the feedstock and the resulting injection pressure.

Applied injection pressures between 0.2 and 5 MPa are counted as the low pressure area of the injection moulding process. Low pressure injection moulding primarily uses paraffin wax based binder systems [17-20]. The advantages of low-pressure injection moulding relative to high-pressure CIM are:

- it is a simple and lower cost process
- with low pressure CIM there is less wear on the machine parts in contact with the powder batch, resulting in less contamination of the ceramic mix by metallic tooling
- it is easier to control the flow behaviour of the batch in LCIM
- the use of LCIM eliminates the separate mixing, pelletising and granulation steps necessary in high pressure injection moulding [18, 21].

Several disadvantages limit the use of this processing technology. In particular, defects which may remain in the moulded parts after sintering. A catalogue of the defects arising from different steps of production has been reviewed by Zhang et al. [22].

The processing cycle

High pressure CIM is in principle borrowed from the plastic injection moulding industry. It can be automated easily and is, unlike other ceramic shaping techniques, suited to high volume production. A schematic view of the processing chain of CIM is given in Fig. 2.

As with all other powder technological processing routes, the choice of the ceramic powder plays a dominant role in ceramic injection moulding. Specific surface area, particle size, size distribution, particle shape and the purity of the powder influence the properties of the injection moulding mass, the so-called feedstock, impacting on the sintering behaviour and the final properties of the ceramic component. Slight changes in particle shape, size distribution or the humidity of the air may influence the rheological behaviour of the feedstock [23].

Typical particle sizes in ceramic injection moulding are 1-2 µm [24], however the use of much finer particles down
to submicron or nano region have been reported [25, 26]. Besides the average particle size, the width of the particle size distribution is important. According to German [27] very wide or very narrow size distributions prove easier to mould.

The feedstock for use in an injection moulding machine is a homogeneous compound of ceramic powder and a thermoplastic binder [9]. The first stage in the fabrication route requires the use of a binder system which will give suitable rheological properties to the ceramic to ensure mouldability [28]. There is considerable interest in employing formulations with the maximum volume fraction of powder in order to achieve high green density and to reduce shrinkage on subsequent sintering. Volume loadings of 50 to 70% are desirable. Nevertheless, viscosity increases considerably with increases in filler loading and therefore it is necessary to reduce the viscosity as far as possible by adding plasticisers.

During mixing the powder particles are coated with dispersants to reduce the surface tension and, after that, integrate with the binder. Avoiding the formation of agglomerates is essential for two reasons:

- ceramic agglomerates function as minute porous sponges that trap the binder
- agglomerates function as defect points in the final sintered components, thereby reducing product strengths and reliability [30].

The mixing or compounding process is carried out in either batch mixers, such as sigma-blade mixers, or in continuous mixers, such as single [3] and twin screw extruders [24, 31] or shear roller compactors [9, 23, 32], at temperatures above the melting points of the binder components. Twin screw extruders and shear rollers offer higher shear rates than the batch mixers and therefore give better dispersion of the powder in the binder, but they can cause degradation of some of the binder components. Upon exiting the compounding device, the mixture is pelletised or granulated ready for delivery to the injection moulding machine.

Rheological data taken during moulding is important in assuring homogeneous mixing [27, 33]. Torque rheometry has proven best for assessing the critical solids loadings in designing feedstock systems. However, a capillary rheometry is required to determine shear rate and temperature dependent viscosity profiles. Such data is essential for successful computer simulation of the mould filling process.

Capillary rheometry is the most accurate measuring method of mixture homogeneity. Another method for characterising the flowability of a ceramic feedstock is the measurement of the melt flow index (MFI). Here, feedstock is molten at a certain temperature in a cylindrical mould and forced through a nozzle with a defined pressure. This determines the volume passing the nozzle within 10 minutes [34].

Binder systems and debinding concepts

According to Chartier et al. [35] four types of organic additives are needed to manufacture parts by injection moulding: binders, plasticisers, dispersants and lubricants. Binders give the necessary rheological behaviour to the
feedstock for injection moulding and the cohesion to the green part. Plasticisers lower the viscosity of the binder to fit it to the process used, while dispersants improve the state of dispersion of the powder in the organic phase and prevent the formation of agglomerates.

Finally, lubricants reduce wear between the feedstock and the tools. Polymers commonly chosen for high-pressure injection moulding are polypropylene [28], low density polyethylene [28], ethylene vinyl acetate [28], polystyrene [28], polymethyl methacrylate [36], polyvinyl butyral [36], or polyacetal [36]. As a processing aid, stearic acid is often applied [28].

BASF has developed a binder system which shows outstanding performance in terms of extremely short debinding times via catalytic debinding approaches and also demonstrates excellent shape retention during both debinding phases [10, 37]. The acetal is decomposed into formaldehyde in a catalytic debinding cycle which is controlled by the use of concentrated nitric or oxalic acid. The formaldehyde is then burned off in a two stage burner to keep nitric oxides and formaldehyde exhaust to a minimum [10, 36, 38].

Binders based on ceramic precursors including silanes, carbosilanes, siloxanes and silacanes have also been reported [38, 39]. Such binder systems lead to very low sintering shrinkage. During pyrolysis the ceramic precursors are converted into amorphous silicon nitride, silicon carbide or mixtures thereof. For preventing the formation of cracks, the pyrolysis must be carried out very slowly under a protective atmosphere.

Several publications report feedstock systems based on carrageenan [40], cellulose derivatives [41] or agar and water [31, 41-44]. Agar is a very widespread group of thermogelling polysaccharides. The water sublimes after the component has been moulded in a drying cycle, and the tools. Polymers commonly chosen for high-pressure injection moulding and the cohesion to the green part. Plasticisers lower the viscosity of the binder to fit it to the process used, while dispersants improve the state of dispersion of the powder in the organic phase and prevent the formation of agglomerates.

Finally, lubricants reduce wear between the feedstock and the tools. Polymers commonly chosen for high-pressure injection moulding are polypropylene [28], low density polyethylene [28], ethylene vinyl acetate [28], polystyrene [28], polymethyl methacrylate [36], polyvinyl butyral [36], or polyacetal [36]. As a processing aid, stearic acid is often applied [28].

BASF has developed a binder system which shows outstanding performance in terms of extremely short debinding times via catalytic debinding approaches and also demonstrates excellent shape retention during both debinding phases [10, 37]. The acetal is decomposed into formaldehyde in a catalytic debinding cycle which is controlled by the use of concentrated nitric or oxalic acid. The formaldehyde is then burned off in a two stage burner to keep nitric oxides and formaldehyde exhaust to a minimum [10, 36, 38].

Binders based on ceramic precursors including silanes, carbosilanes, siloxanes and silacanes have also been reported [38, 39]. Such binder systems lead to very low sintering shrinkage. During pyrolysis the ceramic precursors are converted into amorphous silicon nitride, silicon carbide or mixtures thereof. For preventing the formation of cracks, the pyrolysis must be carried out very slowly under a

Several publications report feedstock systems based on carrageenan [40], cellulose derivatives [41] or agar and water [31, 41-44]. Agar is a very widespread group of thermogelling polysaccharides. The water sublimes after the component has been moulded in a drying cycle, and the tools. Polymers commonly chosen for high-pressure injection moulding are polypropylene [28], low density polyethylene [28], ethylene vinyl acetate [28], polystyrene [28], polymethyl methacrylate [36], polyvinyl butyral [36], or polyacetal [36]. As a processing aid, stearic acid is often applied [28].

BASF has developed a binder system which shows outstanding performance in terms of extremely short debinding times via catalytic debinding approaches and also demonstrates excellent shape retention during both debinding phases [10, 37]. The acetal is decomposed into formaldehyde in a catalytic debinding cycle which is controlled by the use of concentrated nitric or oxalic acid. The formaldehyde is then burned off in a two stage burner to keep nitric oxides and formaldehyde exhaust to a minimum [10, 36, 38].

Binders based on ceramic precursors including silanes, carbosilanes, siloxanes and silacanes have also been reported [38, 39]. Such binder systems lead to very low sintering shrinkage. During pyrolysis the ceramic precursors are converted into amorphous silicon nitride, silicon carbide or mixtures thereof. For preventing the formation of cracks, the pyrolysis must be carried out very slowly under a protective atmosphere.

Several publications report feedstock systems based on carrageenan [40], cellulose derivatives [41] or agar and water [31, 41-44]. Agar is a very widespread group of thermogelling polysaccharides. The water sublimes after the component has been moulded in a drying cycle, and the components are prepared for the final thermal debinding and sintering cycles. Critical issues for this system include the need of careful control of the feedstock’s environment, as the contents of water determines the flow behaviour and solids loading. The injection moulded components show a gel type of behaviour and are flexible or rubbery until they have been dried [36]. This type of binder is only used for low pressure injection moulding.

In recent years, microwave drying has frequently been used; the other alternative is freeze-drying [45, 46]. Further alternative binder concepts which should be mentioned are: [1] freeze-casting, where the aqueous injection moulded feedstock is frozen in the mould cavity [47]; [2] hydrolysis assisted shaping of AlN by temperature induced hydrolysis [48] or [3] temperature-inverse injection moulding [49]. In the last mentioned method a cold aqueous feedstock is injected in the pre-heated mould of 80°C. Owing to a temperature induced reaction the binder strengthens and the green component can be ejected.

Beside the above mentioned catalytic debinding, in the case of polyacetal binder systems and the simple drying of components based on agar and water, thermal debinding is widely used to remove organics before sintering [14, 30, 38, 43, 50, 51]. Since thermal debinding takes place in the whole volume of the injection moulded component and decombustion products must leave the bulk by diffusion, the heating process has to be carried out very slowly to prevent the build up of internal pressures which can cause cracks and voids in parts. In most cases, a mixture of waxes
and polyolefins with various softening points is used in order to prevent the deformation of components during debinding.

The thermal decomposition of individual binder components takes place one after the other, slowly opening pores and allowing for the removal of subsequent decomposition products. Binder components with higher decomposition points are called backbone polymers, maintaining the mechanical stability of the injection moulded part during the debinding process. To prevent deformation of the part occurring when the binder softens, the components can be embedded in a powder bed serving as a wicking media, or they can be placed on special sintering substrates.

In order to overcome the problems associated with thermal debinding, solvent debinding [52, 53] has been widely adopted by industry. In the solvent debinding process, a portion of the binder can be chemically removed by using solvents like acetone, trichloroethane or heptane. The large amount of open porosity after solvent debinding allows the degraded products to easily diffuse to the surface [43].

A more environmentally friendly method is given by binder compositions containing one water-soluble component, such as polyethylene glycol, and one insoluble. Debinding takes place in two steps. In the first step, the injection moulded components are placed in water to remove the soluble component of the binder. At the same time, a system of pore channels develops which allows a relatively fast removal of products. Binder components with higher decomposition points are called backbone polymers, maintaining the mechanical stability of the injection moulded part during the debinding process.

As a further alternative technique for debinding, extraction of organic binders by supercritical fluids has been investigated [54]. Carbon dioxide is currently the most popular fluid used due to its low cost and its convenient critical temperature of 31.1°C and critical pressure of 7.39 MPa [55].

Despite the variety of debinding mechanisms available, the debinding step is the limiting factor in CIM processing. To date, there has been no single debinding method that allows manufacturers to take full advantage of CIM’s vast potential [30], because this processing step is the most time-consuming [56].

Injection moulding process: parameters, defects, proofing

The equipment used for injection moulding CIM parts is the same as the equipment that is used in the plastic injection moulding industry, with small modifications to reduce wear (hardened screw and barrel) and assure homogeneity (modification of screw design) during plastification [24].

In principle, high-pressure ceramic injection moulding can be carried out with two types of injection moulding machines – screw machines and plunger machines. The screw machine differs from the plunger type with respect to material conveying and plasticising [3]. In a plunger machine, a major portion of heat comes from the frictional forces between screw material and cylinder, whereas a plunger machine heats the materials by conduction and convection only. Furthermore, in a plunger machine the pressure loss in the cylinder could be significant, and the pressure at the end of the plunger is much higher than the pressure at the nozzle.

To injection mould a ceramic part, the granulated feedstock is fed into the barrel of the machine and heated to produce a semi-fluid mass. The moulding medium is then forced into the mould cavity through a gated runner system. In screw machines a check-ring mechanism allows the auger to act as a piston, driving the material into the mould [31]. Typically, polymer and wax-based moulding compounds are heated in the moulding machine to temperatures of 130 – 200°C and are injected using barrel pressures between 50 and 150MPa.
Defects which result from the injection moulding process are irreversible and impair the quality of the finished ceramic components. A catalogue of the most frequent defects which may arise during ceramic injection moulding has been compiled by Zhang et al. [22]. Moreover, a comprehensive overview of injection moulding errors, their sources and helpful counteractions has been compiled [13].

Green parts that at first appear to be of good quality can possess internal stresses, which may in turn lead to cracks during later processing steps such as debinding. Local shrinkage differences should therefore be avoided. For this purpose, the use of a hot runner system has been proved to be promising [57]. Material cannot only be saved by hot runner systems, but also the manufacture of parts with fewer internal stresses can be achieved [58].

Because of the abrasive properties of the ceramic powders, the choice of a suitable hardened steel plays an important role for tool construction. For tool design, the geometry of a component and the production volume are crucial aspects. They affect the position of the component in the tool and the number of cavities, the design of the runner system, the type and the position of the sprue, the operating mode and the removal of the injection moulded parts (manually or automated) such as the ejection system [mould parting surface, slides, core pullers] [59].

Depending on the material, the powder packing density achieved by the solid volume content of the feedstocks, the powder particle size, shape and size distribution, the moulded ceramic green parts are typically 14-22 % larger (linear) than the sintered components owing to the shrinkage during sintering. This property of ceramic injection moulding has to be taken into consideration as an oversize factor for tool construction.

Quality control of ceramic components in the green, debound and sintered state is commonly carried out by weighing and by visual inspection. Combining both simple methods allows for the detection of surface cracks, impurities, pores, voids, distortions, incomplete parts or sink marks.

Measuring the density of the ceramic components after sintering is another indispensable method for characterising the performance of the injection moulded part, because most of the defects introduced in the green body during injection moulding either increase or even become obvious after sintering.

A more precise method for detecting deviations from the desired geometry or distortion of components is the 3D coordinate measuring process [26]. For detecting defects inside components already in the green state computed tomography [26, 60] is the non-destructive method of choice. Through computed tomography it is possible to detect entrapped air, voids, cracks, pores, inclusions, impurities, as well as weld lines, powder-binder-separations and density inhomogeneities [61] at an early stage.

MicroCIM

Besides the distinction between high pressure and low pressure ceramic injection moulding, a number of variations have been derived from the ceramic injection moulding process. One method – named after the size of the injection moulded parts – is micro ceramic injection moulding (MicroCIM).

MicroCIM can be carried out using either the high...
Ceramic injection moulding: production, materials & applications

References

[31], [69], [66], [91], [14], [10], [24], [62, 63], [20], [64, 65], [66], [67], [68-71], [67], [62, 63], [64, 65], [66], [67], [68-71]

- **Engine components / Engineering**
 - Ceramic material: SiC
 - Ceramic material: Al₂O₃
 - Ceramic material: Mg-stabilized ZrO₂
 - Ceramic material: SiC
 - Ceramic material: SiO₂
 - Ceramic material: ZrO₂

- **Textile industry**
 - Ceramic material: Al₂O₃
 - Ceramic material: SiC
 - Ceramic material: ZrO₂/Stainless steel

- **Medical/Dental applications**
 - Ceramic material: Al₂O₃
 - Ceramic material: AlN
 - Ceramic material: SiO₂

- **Exhaust system components**
 - Ceramic material: ZrO₂

- **Metallurgy**
 - Ceramic material: Al₂O₃/ZrO₂
 - Ceramic material: SiO₂

- **Automotive components**
 - Ceramic material: Al₂O₃, Si₃N₄
 - Ceramic material: Si₃N₄
 - Ceramic material: SiC
 - Ceramic material: Si₃N₄ + MoSi₂
 - Ceramic material: Si₃N₄/zirconia
 - Ceramic material: Si₃N₄/SA10N

- **Electrical components**
 - Ceramic material: Al₂O₃, steatite
 - Ceramic material: Al₂O₃
 - Ceramic material: Al₂O₃
 - Ceramic material: Al₂O₃/TiN
 - Ceramic material: Al₂O₃

- **Home appliance and office equipment**
 - Ceramic material: ZrO₂
 - Ceramic material: ZrO₂
 - Ceramic material: Al₂O₃
 - Ceramic material: Al₂O₃
 - Ceramic material: Al₂O₃

With respect to the surface quality of the replicated structures, the best results have been achieved by using ceramic powders with a mean particle diameter of 0.5µm or even smaller. The demand to process finer powders, including through holes, gear teeth and screw threads is well suited for MicroCIM production. MicroCIM parts weighing as little as 0.0004g serve in a wide variety of applications where high temperatures and caustic environments preclude most metals and engineered thermoplastics [66]. Micro related products can be used in the fields of information and communication technology, medical and biotechnology, such as micro-sensor and micro-actor technology [67]. MicroCIM allows the manufacturing of precision products characterised by minimal wall thicknesses of 20µm, aspect ratios up to 20 or structural details in the range of 50µm or in certain cases less than 20µm, with a surface roughness of about Rₐ < 0.05µm [68-71]. Good examples of micro injection moulded devices are multi-fibre connectors with 16 multi-mode channels, or containers for 3D cell culture systems using micromechanically cut mould inserts. For the adaption of the process to micro manufacturing, however, additional features had to be developed and implemented. Although there is a relatively wide range of materials available for CIM, it is necessary to focus on powders of small particle size. The initial powder requirements for MicroCIM are more stringent than that for conventional CIM. The powder must be homogeneous; and the grain size of the sintered part should be at least about one order of magnitude smaller than the minimum internal dimensions of the micro-component in order to obtain a reasonably isotropic behaviour [67, 72].
can therefore be regarded as one of the most important results of research carried out to-date in MicroCIM [73].

To obtain a viscosity of the plastic melt which is low enough to fill even the smallest structural details down to the submicrometer range, a so-called variotherm temperature conductor is used for heating the moulding tool near the melting point of the feedstock prior to its injection into the tool [73, 74]. Due to the high fragility of most microstructures, highly precise tool movements have to be assured in MicroCIM. To enable the injection process to be accelerated or slowed down in a controlled way by means of ramps, injection moulding machines with position regulated screws have been developed [63]. Moreover, micro components are considerably different to handle from macroscopic components, for instance in micro dimensions, electrostatic forces exceed the gravitational force so that micro parts sometimes stick to handling systems instead of dropping.

Alternatives to MicroCIM are rare. LIGA techniques are usually only suitable for 2D geometries, and most of the techniques are too expensive to become cost-effective in the near future [75]. Good examples of ceramic micro components are a cogwheel for micro motors which has been manufactured by means of a fully-automatic series production of CIM moulding process and a ferrule with a through hole diameter of 125µm [63].

To improve the precision and the acuteness of surface micro structures such as the homogeneity of injection moulded parts, the shaping process can also be carried out as injection compression moulding. This means, after injecting the feedstock in the mould cavity the tool is compressed by a stroke of 0.2 to 0.3mm providing an additional embossing step.

Multicomponent PIM

Micro components are not only becoming ever smaller, they are also often required to have several functions at one time [63]. Such a trend can also be seen for advanced ceramic macro components. The first ideas and patents concerning co-injection moulding of two synthetic materials appeared 40 years ago [76].

The first applications of two-colour injection moulding were keys with abrasion-resistant symbols for computer keyboards or telephones [77]. Applications from the automotive sector show that co-injection moulding is today applied to a great variety of automotive components. Thanks to this technique, not only different colours but also thermal, mechanical, electrical and optical properties of plastics can be combined in one processing step [77].

In the mid 1990’s multi-component injection moulding was applied to PIM technology since the ability to manufacture and surface engineer a component in a single process has attractive implications, both technically and financially.

- toughened components with a skin containing 20 vol.-% partially stabilised zirconia surrounding a 100% alumina core [79]
- a ceramic heater consisting of different Al₂O₃/TiN-mixed ceramics [80].

The combination of different ceramic materials and ceramics with metals by two-component injection moulding has been further described [81]. By systematically combining ceramic and metal powder components via two-component injection moulding, new and highly functional composites with property combinations such as conductive/insulating, magnetic/non-magnetic, thermal conductive/thermal
insulating or ductile/hard are achievable [82].

All studies on 2C-CIM have confirmed that sintering rate control is crucial to the success of this shaping method. Both components must sinter at similar rates and at similar positions in the sintering temperature profile to avoid delaminations. The sintering behaviour can be altered by lowering the powder content of one mix, and hence its green density, at the risk of a porous component or by the addition of a second non-sintering composite phase [78]. The variety and combination of materials that can be used in the manufacture of metal or ceramic components by powder co-injection moulding is more limited due to the requirement for compatible sintering characteristics [78]. Depending on the design and size of the contact area of both ceramic materials the feedstock components can be injected simultaneously or sequentially. A quick succession of the injection processes is essential for a high compound strength [80].

In order to be successful in two-component powder injection moulding it is essential to develop feedstocks with comparable shrinkage rates during co-debinding and co-sintering of the injection moulded material compounds. The absolute shrinkage during sintering depends on the solid content of the feedstock, i.e. the green packing density of the powder. Furthermore, the shrinking behaviour of the powders are influenced by the type of ceramic powder used and its particle size distribution [60].

To achieve defect-free material compounds after the thermal treatment it is necessary that the onset of shrinkage of both materials is comparable and that the thermal expansion coefficient of the ceramic materials is almost the same. The latter criterion is decisive during cooling of the material compound after sintering for preventing high cooling stresses. Moreover, a similar thermal expansion coefficient would be crucial for surviving cyclic heating and cooling of the compound during application [26].

The large-scale production of multifunctional components with complex geometries is also the goal of a further process variant - the so-called inmould labelling where ceramic injection moulding is applied to complete several inserts like ceramic or metallic green tapes [83, 84] or green components. Inmould-labelling combines shaping methods like tape casting with injection moulding and offers some additional process-relevant advantages:

- very thin functional layers can be realised
- intermediate layers improve the material composite and facilitate transitions in thermal expansion behaviour
- extremely high aspect ratios can be obtained within the composite

Stainless steel and yttrium-stabilized zirconia have been chosen as a material combination and has been successfully combined by inmould-labelling such as by two-component injection moulding [82 and 85].

Special process variants

A further important method of ceramic injection moulding is gas assisted injection moulding [86, 87]. Since the size of injection moulded parts is limited by economic efficiency due to the expensive powders needed, as well as the time required for the debinding of the parts with high wall thickness, the combination of CIM with gas-assisted injection moulding is of great importance.

Gas-assisted powder injection moulding (GAPIM) can be subdivided into two different processes, the full shot and the short shot process. Using the full shot process, the gas is injected when the cavity is filled completely with melt. The injected gas pressure forms a bubble in the inner core by pressing the melt into an additional cavity. In the short shot process the gas is injected into the partly filled cavity. The gas presses the melt to the end of the cavity. When processing ceramic feedstocks by GAPIM, time and costs can be saved in the debinding step. On the other hand, parts of high geometrical complexity used to pipe corrosive media, media under high pressure or temperature can be produced in an automated way. The use of GAPIM is described in literature for alumina and silicon nitride ceramics [87].

For continuous or semi-continuous production of ceramic parts, extrusion is very interesting because of the relative simplicity of the equipment. All type of plasticised material can be extruded by pressing them through the orifice of a die. Therefore, for thermoplastic extrusion of ceramic bodies, in principle the same polymer binders,
plasticisers, surfactants and sliding agents known for ceramic injection moulding can be used [88]. Typical products are thin-walled tubes [89], pipes, or fibers.

Summary and outlook

According to [106] major growth areas in PIM in the coming years can be seen in multi-component PIM and MicroPIM. Multi-component PIM enables several different materials to be combined in a single component, although the difficulties lie in the combination of the physical properties of the various materials.

In the case of MicroPIM the challenge is to develop a suitable feedstock and high-precision, miniaturised mould cavities. The fully automatic process for removing the micro components also represents an enormous technical challenge.

For industry, process optimisation and cost-reduction are of great concern. Universities and research centres efforts are focused on computer modelling of moulding, debinding and sintering. Computer simulation of the PIM process to predict size, shape, defects and to properly design tool and production operations is a major activity.

Another goal is the production of very small medical and computer devices using fine-grained powders [4].

Acknowledgements

This review article bases on input from the members of the Expert Group "Ceramic Injection Moulding (CIM) in the German Ceramic Society (DKG)."

Contact

Dr. Tassilo Moritz, Dr. Reinhard Lenk Fränkhofer-Institut für Keramische Technologien und Systeme, IKTS Winterbergstraße 28, 01277 Dresden, Germany
Tel: +49 351 2553 747
Fax: +49 351 2554 197
Email: tassilo.moritz@ikts.fraunhofer.de

References

[34] T. Charter et al.: Injection moulding of hollow silicon nitride parts using fusible alloy cores, Ceramics International 27(2001), 821-827
Ceramic injection moulding: production, materials & applications

[69] M. Sutter: Mikrospritzgießen bringt Keramik in Hochform, Mikroproduktion (2009), 1, 48-52

Subscribe today for only £95 and stay up-to-date with PIM industry developments

Subscribe to Powder Injection Moulding International today. Return by fax to: +44 (0)1743 469 909.

☐ I would like to subscribe to Powder Injection Moulding International for one year

Your contact details

Title ... Forename(s) ... Family Name ...
Job Title/Position
Organisation ...
Full address ...
..
Postcode ... Country ...
Tel: ... Fax: ...
E-mail: ...

Subscription period
Powder Injection Moulding International is published on a quarterly basis. The subscription fee is £95.00 for one year (four issues). Your subscription will commence with the next available issue unless otherwise stated below.

Please start subscription with issue: ...

Multiple subscription discount - save 25%
Organisations wishing to purchase four or more subscriptions to Powder Injection Moulding International can receive 25% discount on the total cost. Please contact Paul Whittaker, email: paul@inovar-communications.com, to order.

Payment options

☐ Please invoice me for £95.00. I understand that subscriptions will not start until full payment is made.
☐ Please charge £95.00 to my credit card as follows: ☐ VISA ☐ MasterCard ☐ American Express

Name on Card: ...
Card Number: ... 3/4 Digit Security Code
Expiry Date: ..

Signature: ... Date: ..

Fax to: +44 (0) 1743 469 909